pansci

全台最大科學知識社群
  1. 相信大家都知道自己終有死亡的一天,但不知道是哪天,總要等到醫生對我說對不起,我才會明白「死前價值建立模式」是什麼一回事,不如在這之前開啟「旅行模式」,好好運用每一天,思考模式由「今年/下個月/這星期/明天要做什麼」變為「我這一生要做什麼」。

    The post 旅遊與死亡:為何在旅行中的自己,總是比較積極? appeared first on PanSci 泛科學.

  2. 身為一介投身科學知識傳播與教育領域的文科生,我一直在找尋兩個問題的答案。第一個問題是,要怎樣讓比較適合文科的孩子不要放棄對理科的好奇心與興趣?第二個問題是,要怎樣讓適合理科的孩子未來能夠不要掉入「專業的詛咒」。

    The post 怎樣讓比較適合文科的孩子不要放棄對理科的興趣?–《跟大師學創造力》 appeared first on PanSci 泛科學.

  3. 七美原先被稱作南嶼或南大嶼,自過去以來島上便一直流傳著七位美人的故事,甚至為紀念傳說中他們殉節的情操,於1949年申請將大嶼鄉改名為七美鄉。而在七美人傳說的最後,七美人塚旁長出了七株植物,關於這七株植物的說法有許多版本,光是現存的說法就有香花樹或香楸樹兩種可能,這樣的一種傳奇植物,其本體究竟為何?筆者為此進行了一連串的考據,最終不只在文獻裡找到有力的事實,也在調查不同年代的紀錄的過程中,發現很有意思的傳說演進。因此,雖然要調查植物的種類只需到現場採集樣本進行分析就能得到答案了,但這次不妨就先跟著我們一起從文獻裡找找線索吧!

    The post 澎湖七美人傳說:美人投井後,長出的到底是什麼樹? appeared first on PanSci 泛科學.

  4. 當小報《紐約每日新聞》用〈愚蠢至極:許多美國人仍不相信大霹靂或演化論〉這類標題哀嘆一般大眾欠缺科學素養時,這樣的做法其實無益於科學知識傳播。面對科學,一般大眾往往容易被媒體誤導,而高知識份子有時候也難以倖免,為什麼?

    The post 嘲笑不能解決問題:在這複雜世界裡,尋求答案本就不易——《拒絕真相的人》 appeared first on PanSci 泛科學.

  5. 與台灣民生息息相關的颱風,你了解多少?颱風是台灣最常見的天災,雖說是「災」,但其實也帶有祝福的成分:我們依賴颱風帶來雨水。面對猶如雙面刃又難以預料的颱風,我們能做的就是審慎預測與防範。

    The post 颱風不只是夏日「期間限定」的特產——《天有可測風雲》 appeared first on PanSci 泛科學.

  6. 一般民眾大多都是從新聞媒體上得知這些化學災害,卻很少人知道面對與處理這些災害的人到底是誰?

    The post 化學災害的幕後英雄:化學技術特工出動!(上) appeared first on PanSci 泛科學.

  7. 馬家演化史
    在台灣,騎過馬的人不多,不過大家都知道馬。歷史上馬曾經有過許多種近親,現在大部分卻都滅絕了,依然存在的幾種斑馬與驢中,好幾種也面臨滅團危機。

    [caption id="attachment_131228" align="aligncenter" width="509"] 斑驢,一位已經滅絕的馬家成員。圖/取自 wiki[/caption]

    探索滅絕生物,古代 DNA 近來成為一大利器。事實上,史上第一個古代 DNA 研究,對象正是一百多年前滅絕的馬家成員:斑驢(Equus quagga quagga,現在認為牠算是一種斑馬的亞種)。1984 年發表的論文,由死去多時的斑驢標本中獲得 DNA 片段,向世人宣告遺傳物質,不見得一定要從活體中取得 [1]。此論文也啟發了瑞典博士生史凡德.帕波,他日後投入尼安德塔人的研究,開創了全新的古代遺傳學領域。

    如今不論是獲取古代 DNA 的技術,或基因體學的分析方法,都大幅超越 20 年前,讓我們能更加清楚地探究馬家的演化過程。斑驢 DNA 首度問世的 20 年後,2014 年發表的論文一共定序了 9 種馬家成員,也包括覆蓋率達到 7.9,更完整的斑驢基因組。[2]

    延伸閱讀:馬改變了人類文明,人又如何改變了馬?

    馬、驢、斑馬都屬於馬屬(Equus),其中馬較早分家,驢和斑馬彼此關係較近。比較各種馬家成員的基因組,建構的親緣關係顯示,斑馬和驢的祖先,分家於 210 到 340 萬年前;而馬屬的共同祖先,誕生於 400 多萬年前。

    [caption id="attachment_131229" align="aligncenter" width="541"] 9 種馬、驢、斑馬的染色體數目,與親緣關係。圖/取自 ref 2[/caption]
    染色體數目不一,仍可交流 DNA?
    依現在的分佈狀況,馬住在歐亞大陸,驢在歐亞大陸與非洲都有,斑馬只住在非洲,美洲則是一種馬都沒有;然而馬屬最初的發源地,卻很可能位於美洲。綜合遺傳與化石記錄來看,馬屬是先在美洲現蹤;然後移民歐亞大陸,衍生出驢;接著於歐亞大陸或非洲的某處,再分化出縱橫於非洲的斑馬。

    多種馬屬成員,彼此間染色體數目相差很大,例如索馬利野驢(Equus africanus somaliensis)有 31 對、62 條染色體,細紋斑馬(Equus grevyi)有 23 對、46 條染色體。出乎意料的是,染色體數目差異很多的 9 種馬屬成員,在牠們之間卻偵測到 4 次遺傳交流的跡象,例如上述提到的索馬利野驢與細紋斑馬。

    假如兩種生物間發生過遺傳交流,意謂牠們曾經有過混血,並且能夠產生具有生殖能力的混血後代。過往認為,兩種動物間若是染色體數目不同,將成為兩者之間情慾交流的障礙;可是索馬利野驢和細紋斑馬,染色體數目差那麼多卻仍能混血,不符合以前的認知。詳細的狀況,仍有待更多研究釐清。

    [caption id="attachment_131230" align="aligncenter" width="520"] 馬、驢、斑馬在歷史上,曾發生過 4 次遺傳交流。圖/取自 ref 2[/caption]
    是驢?是馬?身世神秘的美洲古馬
    美洲儘管身為馬的發源地,如今卻是一種原住民馬都沒有。要研究美洲馬家的遺傳史,只能由古代 DNA 下手。美洲在幾萬年前除了馬以外,還住著一群分類不明的古馬「New World stilt-legged(簡稱 NWSL)」。有些學者由型態判斷,牠們比較接近亞洲的親戚亞洲野驢;也有學者根據定序到少少的 DNA 片段推測,NWSL 古馬應該跟馬比較親。

    美洲的 NWSL 古馬究竟是驢?是馬?今年發表的論文,蒐集許多古馬樣本,包括 26 個完整的粒線體 DNA,以及 17 個殘缺的細胞核基因組,希望能確認 NWSL 古馬在馬家中的位置。[3]

    結果令人驚訝,NWSL 古馬竟然不是驢,也不是馬!用粒線體 DNA 建構的親緣關係顯示,牠們在演化樹上自成一群,算是一個獨立在馬屬(馬、驢、斑馬)以外的支系。牠們更外頭是也已經滅絕,同為馬科的另一個屬:南美土著馬(Hippidion saldiasi)。

    這個論文估計了馬、驢、斑馬共同祖先的年代,介於 377 到 440 萬年前,與之前研究的估計一致;而 NWSL 古馬與牠們大概是在 409 到 513 萬年前分家;南美土著馬分化的年代當然更早,距今約為 515 到 766 萬年。用細胞核基因組計算的時間和粒線體有點落差,不過十分一致地,將 NWSL 與親戚歸類成不同分枝。

    [caption id="attachment_131231" align="aligncenter" width="537"] 以完整的粒線體 DNA 建構,馬、驢、斑馬、南美土著馬,以及這回新定序 NWSL 古馬(哈靈頓馬),之間的親緣關係和分家年代。圖/取自 ref 3[/caption]
    定義美洲馬家新成員:哈靈頓馬
    由遺傳關係判斷,NWSL 古馬是與馬屬旗下的馬、驢、斑馬,以及也已滅絕的南美土著馬,皆已分家數百萬年的獨立支系,研究團隊決定將其定義為一個新的屬:Haringtonhippus。屬名來自動物學家 Charles Richard Harington,因此 Haringtonhippus 可稱之為「哈靈頓馬屬」。

    之前 NWSL 這群古馬的化石,曾被歸類為好幾個物種,卻爭議連連;由 DNA 看來,已知樣本間差異都很有限,共同祖先可以追溯到 50 萬年內,所以研究團隊認為,牠們暫時只需歸類為一個新物種即可:Haringtonhippus francisci。為求方便,本文接下來就稱呼牠們為「哈靈頓馬」。

    最初的馬屬成員是先在美洲誕生,接著才移民到亞洲。目前已知的哈靈頓馬只住在北美與中美洲,而南美土著馬也只在美洲出土過,因此哈靈頓馬屬應該也是在美洲當地演化出來的。假如哈靈頓馬起源於美洲,那麼牠們和亞洲的驢子親戚,之所以某些型態相似,可以推論,多半是趨同演化所致。

    [caption id="attachment_131232" align="aligncenter" width="529"] 出土哈靈頓馬的分佈位置。圖/取自 ref 3[/caption]
    後來的美洲沒有馬
    有意思的是,哈靈頓馬屬與親戚分家的年代,根據 DNA 分析超過 400 萬年;已知的化石記錄中,哈靈頓馬屬的型態特徵首度出現,卻至少要等到 300 萬年前;而北美洲馬的專屬特徵,則至少於距今 190 萬年才能觀察到。

    型態上判斷兩種馬家成員的特徵,都比遺傳上分家的年代更晚出現;這般不一致,也許是化石記錄不全所致,也或許是遺傳上分化以後一段時間,獨特的型態特徵才慢慢演化出來,目前資訊有限,尚不足以論斷。

    新的定年結果指出,哈靈頓馬至少在北美洲西北方的育空地區,生存到距今 14400 年前才滅絕。假如哈靈頓馬(不管旗下曾有過多少物種)誕生於超過 400 萬年前,那麼可以推論,牠們至少和兩群美洲的馬家親戚,美洲馬與南美土著馬,共同生活將近 400 萬年之久,卻在距今一萬年前左右,冰河時期結束之際,三者一同消失。

    [caption id="attachment_131424" align="aligncenter" width="560"] 哈靈頓馬想象圖。美洲曾經有過馬,只是後來都滅絕了。圖/取自本研究新聞稿〈A horse is a horse, of course, of course -- except when it isn't〉[/caption]

    這也是世紀帝國的馬雅人和阿茲特克人,都沒有馬的原因。一開始移民美洲的人類,或許還有機會見過馬,但是之後不管哪種美洲馬都滅絕了,一種都不剩。
    結合古代 DNA,共創古生物學新紀元
    看到這裡,也許有讀者心中浮現疑惑:新物種能光靠 DNA 認定嗎?何況這邊定義的不只是物種,還是一個已經滅絕多時,全新的屬。不過以哈靈頓馬的狀況而言,牠已經為世人所知超過百年,但親緣關係仍曖昧不明;而過往依賴型態差異的分析方法,只能判斷牠們與美洲馬不一樣,卻無法更進一步的釐清問題。

    相對的,在 DNA 建構的親緣關係樹中,哈靈頓馬在馬家中的位置相當明確,所有型態上被歸類為哈靈頓馬的化石樣本,遺傳上都屬於一個獨立,與其他親戚分家達到數百萬年的分枝;這才使得這回的研究團隊,有充分的理由,將所有哈靈頓馬都歸類為一個新成立的屬與種。

    從 1984 年的斑驢到 2017 年的哈靈頓馬,眾多馬家成員見證了古代遺傳學的進展,古代 DNA 讓我們又多了一種認識過去的方法。古生物學與古代 DNA 結合,邁入新的紀元。

    延伸閱讀:

    馬與古文明:騎馬打仗是馴化後好幾千年的事?
    不用觀落陰,DNA帶你重回人類大歷史現場 ——古代DNA追追追(上)
    啊~ 追著你的人、追著你從哪來、追著你的發展歷史——古代DNA追追追(下)
    馬雅人精選-雌雄同體木瓜

    參考文獻:

    Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991), 282-284.
    Jónsson, H., Schubert, M., Seguin-Orlando, A., Ginolhac, A., Petersen, L., Fumagalli, M.,... & Lear, T. (2014). Speciation with gene flow in equids despite extensive chromosomal plasticity. Proceedings of the National Academy of Sciences, 111(52), 18655-18660.
    Heintzman, P. D., Zazula, G. D., MacPhee, R. D., Scott, E., Cahill, J. A., McHorse, B. K.,... & Southon, J. (2017). A new genus of horse from Pleistocene North America. eLife, 6.

    本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁。

    The post 哈靈頓馬非馬?已滅絕的美洲馬家新成員上線啦! appeared first on PanSci 泛科學.

  8. 為何我們挑選了這本書:

    現代的科學研究無疑讓我們的生活進步,但 人們「反科學」的例子卻仍時有所聞:不願接種疫苗、對基改食物過度的恐慌、跟從樓梯上摔下來相比更害怕墜機但明明是前者機率比較高......等等等,是因為集體的科學素養不夠嗎?還是有什麼因子在背後操縱?為何明明科學證據都放在眼前,大家卻還是不相信科學?
    《拒絕真相的人》不只探討人們抗拒健康相關的科學背後的心理機制,也談它在演化上的原因。對這不科學的世界百思不得其解的你,讓我們一起來尋求解答吧!
    對抗說服
    在面對魅力領袖使用說服技巧時,我們該怎麼做?我們有可能抗拒他的說服嗎?

    [caption id="attachment_131607" align="aligncenter" width="560"] 在面對魅力領袖使用說服技巧時,我們有可能抗拒他的說服嗎?source:wikimedia[/caption]

    雖然說服的相關研究遠多過抗拒說服的研究,但心理學家仍發現我們有可能避免被說服:你可以用一樣的字眼來對抗說服,例如回覆說施打疫苗後能抵抗某些疾病。人們可以組織出相反的論點、預先提醒自己即將有說服性的訊息出現,以及在聽過說服性的訊息後與採取行動之前先獨自思考,以對抗這些說服性的說法。尤其是,就好比一個人在注射微量病毒後,就擁有對抗病毒的能力,他的免疫力會升高並能與病毒對抗。我們可以把自己置身在較溫和的說服裡,以取得對抗說服的能力,然後就能產生出相反的論點。

    [caption id="attachment_131399" align="aligncenter" width="560"] 施打疫苗以增加抵抗力。 圖/pixabay[/caption]

    有一群理論家提出所謂的「說服知識模型」,意思是指人們處理強大訊息的方式,並且認出訊息來源以及說服出現的過程。該理論指出,人們學習用「應付」的技巧來處理會隨著時間發展、改變的說服性訊息。

    應付技巧可以幫助人們把他們對訊息的情緒反應和理性評估區分開來,重新把注意力放在對他們來說更重要的訊息上,而不是去注意說服者試圖強調的部分,並了解說服訊息源自哪些連鎖事件,或是判斷說服者的目的和手法。

    其他實驗則顯示,個人的認知來源對於他們是否會被一則訊息說服具有重要影響。認知負荷是指一個人的認知之緊繃程度為何。在實驗裡,人們被迫記憶很長的數字串,就是個高負荷的認知狀況;至於記憶非常短的數字串,就可能是低負荷的認知狀況。其操作目的在於想知道當人們稍微分心時,說服的影響會有什麼變化。有個研究嘗試透過受試者認知負荷的程度,評估他們抗拒說服的能力。

    [caption id="attachment_131409" align="aligncenter" width="458"] Friestad 和 Wright 在 1994 年提出說服知識模型(Persuasion knowledge Model,簡稱 PKM)。[/caption]

    在情況一當中,受試者被告知有種新藥叫做阿司匹林強效藥,這種藥由於味道不好所以評價很差,而且大量製造時會產生對環境有害的影響。然後,這些受試者被要求記憶一長串數字(高負荷認知狀況),接下來再觀看阿司匹林強效藥的廣告,並被要求盡可能多寫一些反對使用這產品的想法。

    在另一種情況裡,受試者被要求記憶短字串(低負荷認知狀況),然後觀賞廣告,並被要求想出反對這種藥的想法。結果研究者發現,高認知負荷的人較無法確定自己對藥的態度,儘管他們認為廣告來源相當可信;至於低認知負荷的人,他們提出的反對看法品質較好,儘管處在高認知負荷的人反對新藥的絕對數字較高。
    這些實驗清一色地顯示出,人們抗拒說服的難度與說法來源以外的因素有關,人們獲得資訊的情況、對議題的了解程度,以及他們的分心程度,全都會影響人們思考反對想法的能力,而這些反對想法可以避免他們被完全說服。和人們的直覺相反的是,當你越疲累、壓力越大、越忙碌,你越可能被說服性訊息給說服,因為你已經沒有力氣想出更好的想法了。
    另外一些證據顯示,讓人們意識到他們正在處理說服性訊息以及所相信的偏見,有助於他們重新思考自己的態度。在一項實驗中,研究者讓受試者接收一則訊息,訊息來源有可能讓人喜歡或討厭,其中有些受試者還特別被告知不要讓「非訊息」因素影響他們對該訊息的判斷。當受試者已被一個仰賴非訊息性認知的邊緣途徑說服(例如演講者的權威),這時若提醒他他可能有偏見,他便會更小心檢視訊息,並在解讀訊息時帶著較少偏見。

    [caption id="attachment_131403" align="aligncenter" width="560"] 1923 年的阿斯匹靈廣告。 圖/Wikimedia[/caption]

    這些實驗結果顯示,說服過程確實存在著可讓人們干預的空間,我們確實可以鼓勵人們更謹慎地檢視魅力領袖所提出的說服性訊息。舉例來說,護士和醫生在面對害怕讓孩子接種疫苗的父母時,也許可以試著先幫他們的態度打個預防針。與其和家長爭辯,健康照護人員可以提出家長可能聽過的弱化版反疫苗說法,醫生或護士甚至可以接受訓練,用高度平實的態度提出這些觀點。

    研究顯示,當人接收到大量弱化版本的說服性說法時,他們會提出有效的反對意見來對抗它們。之後,健康照護人員可以鼓勵父母過幾天再回來,大家再次討論接種疫苗的可能性。在這段空檔期間,父母有可能會提出反對意見與之抗衡,但更有可能會帶著改變的態度回到醫生那裡。
    當偏見形成時,該怎麼辦?
    當然,這個策略不一定對每個人都有效,對於反疫苗態度已經根深蒂固的人,或是面臨巨大社會壓力要他們別讓孩子接種疫苗的人,他們也許不會因為這個策略而有所動搖。然而,這個策略對於單純不確定疫苗優劣,並且可能被反疫苗提倡者說服的父母會有效。比起已確信疫苗有害的人,這類父母是廣大且更脆弱的一群人。如果我們可以讓拿不定主意的父母決定讓孩子接種疫苗,也許就能避免看到當今疫苗接種率的可怕落差。

    這種「打預防針」的做法可以根據以下的方式進行:
    父母:我聽說疫苗會對孩童造成嚴重的腦部傷害,像是自閉症。我不確定該不該讓我的孩子接種疫苗。

    護士:沒錯,有些人說疫苗會導致自閉症,他們提出的證據包括過去幾年罹患自閉症的人數增加、人們使用的疫苗有少量水銀防腐劑、大量使用水銀會傷害腦部,有些父母則堅持說他們的小孩接種疫苗後開始出現自閉症徵兆。你聽過這些說法,可能會想做些相關研究,看看這些說法有什麼證據。我很樂意幫你,然後再針對你的顧慮和你聊聊。我們何不約個時間,來聊聊你的想法和顧慮?
    對於正面臨讓人困惑、彼此衝突科學訊息的人,我們建議採取一些策略。花點時間,往後退一步,然後思考一下如果是你,你會如何處理你面前的資訊呢。當你在打掃家裡、打電話並幫孩子做晚餐時,在你身後是珍妮.麥卡錫出現在電視的畫面嗎?或是你坐下來,帶著清醒頭腦聽那些說法,然後給自己足夠的時間想想反面論證呢?你是否可能出現任何偏見呢?

    當你正為自己的健康與安全做出重要決定時,例如是否要購買槍枝或讓你的家人接受休克療法,花點時間列出你在接收這些訊息時可能會有的偏見,這會是個明智的做法。

    是誰告訴你休克療法會導致腦部損傷?他們有沒有任何可能的偏見呢?有哪些非訊息因素可能影響你對訊息的理解?我們可以列出很多這類的簡單反思,好確定自己不會被魅力領袖或偏見說服,並且真正徹底思考過這些事實,好去意識到所有可能的認知陷阱。認出壓力來源也很重要,就像我們前面說的,在認知負荷達到最低時,人可以做出合理的決定。

    諾瑞娜.赫茲(Noreena Hertz)在她非常有用的書《老虎、蛇和牧羊人的背後》(Eyes Wide Open)裡,討論到鼓勵人們平靜思考其他觀點:
    研究顯示,只要安插像「試著想想看,如果……」這樣的問句,就可以讓我們思考其他解釋和不同的觀點,讓我們可以拉開和各種可能影響自己的框架、暗示、錨點和修辭之間的距離。當我們掙脫這些花招和手法時,我們就可以用更中立、較不情緒化、較理性和細緻的角度來看待這些資訊。
    從公眾健康的角度看,任何希望降低魅力領袖影響之做法,其中很重要的一點是要認真思考這些領袖讓人們覺得安全、被理解甚至被愛的強大影響。我們說過,魅力領袖越能召喚出追隨者潛在的恐懼,對既定大腦迴路的啟動就越強烈,因此,可與之抗衡的證據就越難產生影響。

    魅力領袖誘發大腦改變的步驟是先升高大腦中心的恐懼(像杏仁體),然後抑制位於前額葉皮質的決策區域,這些大腦變化也會提高催產素的釋放,而讓我們擁有歸屬感和安慰感。在面對這些強大的效果時,用枯燥、學究般的訓斥口吻說明資料,將讓我們徒勞無功。相反地,讓人們覺得自己能夠用理性思考評估科學論點非常重要,這樣能讓他們覺得自己正在加入一個友善的團體,裡面的人信任科學方法,並且願意找到健康的真相。

    [caption id="attachment_131408" align="aligncenter" width="516"] 從不同角度看杏仁核的位置(紅色為杏仁核)動畫。 圖/wikipedia[/caption]

    抗拒說服需要自覺和批判性思考,這不必然是一種直覺或天生就有的能力;但是,學習這種批判性思考對任何人的生涯或人生都有幫助,而不會只對抗拒反科學觀點有幫助。因此,中學和高中課程若能花更多時間培養這種技術,這也是很合理的。就像我們在整本書裡所倡導的,學校與其花很多時間要孩子死背,不如教孩子思考複雜問題的技巧,孩子應該學習如何分辨有瑕疵的實驗設計或有問題的說法,意識到自己該如何處理這些說法,以及自製有效的反面論證並檢測這些想法。

    多花時間在辯論技巧上,要求孩子就他們直覺上相信的事情彼此辯論,或甚至只是教孩子看出說服背後的措辭和心理學,這些都有助於人們發展出有用的批判性思考能力。培養批判性思考並且意識到認知陷阱與偏見,不只能幫我們認出有問題的科學論述,也能讓我們成為更好的決策者、思考家以及更有見識的公民。

    本文摘自《拒絕真相的人:人們為何不相信科學?》,八旗文化出版。

    The post 當人們掉入了魅力領袖的魔法陣:該如何對抗大大們的權威說服?——《拒絕真相的人》 appeared first on PanSci 泛科學.

  9. 一般民眾大多都是從新聞媒體上得知這些化學災害,卻很少人知道面對與處理這些災害的人到底是誰?

    The post 化學災害的幕後英雄:化學技術特工出動!(下) appeared first on PanSci 泛科學.

  10. 一如許多人事前的預期,重力波研究毫無懸念的拿下了今年的諾貝爾物理獎,但這將只是一連串大發現的開端。美國國家科學基金會(NSF)10 月16 日在華府與重力波研究團隊大陣仗的召開記者會,宣布了人類首度透過各個電磁波段確認重力波來源,並詳細觀測爆發後的餘暉,這場碰撞不僅實際上使全球振動,也讓許多地面和軌道上的大望遠鏡轉向同樣的目標。重力波獲獎的獨白甫落幕,但多角觀測才正要閃亮登場呢!

    The post 重力波太強,不晃會被撞到地上:為何重力波讓整個天文學界為之震動呢?──《科學月刊》 appeared first on PanSci 泛科學.

Download Freewww.bigtheme.net/joomla Joomla Templates Responsive